• Complete all fieldwork requirements.

• Full coverage of Component 3: Applied Fieldwork Enquiry, including the methodological approach and conceptual framework enabling students to be prepared for paper 3: Applied Fieldwork Enquiry.

• Choice of rivers, coastal, ecosystems or rural-urban environments to ensure fieldwork requirements are met.

• Integrated mathematical, statistical and GIS techniques to improve students’ confidence and competence.
<table>
<thead>
<tr>
<th>DAY</th>
<th>MORNING</th>
<th>AFTERNOON</th>
<th>EVENING</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>Arrive for Evening Meal
Students will be greeted by FSC staff, with a welcome talk followed by a brief tour of the Centre and the local area.
Outline of the Course
Allocation of wellies/waterproofs.</td>
<td>Preparing for Fieldwork Enquiry
Students will be introduced to the environment in which they will conduct their fieldwork enquiries. They will prepare for the data collection by posing questions, designing fieldwork data sheets and considering sampling methods.</td>
</tr>
<tr>
<td>2</td>
<td>Fieldwork Methodology</td>
<td>In each of these methodological approaches, students will visit one of the UK’s best fieldwork locations. They will visit one of the following:
 - Thriving and vibrant urban location
 - Classic and spectacular river catchment
 - Dynamic and stimulating coastal landscape
 - Diverse and flourishing natural environment
They will choose one fieldwork methodology depending on the year of examination:
 - Use of Transects
 - Change Over Time
 - Qualitative Surveys
 - Geographical Flows</td>
<td>Geographical Enquiry Process: Sections 1.3, 1.4, 1.5 and 1.6
Students will complete the enquiry process, placing their field data into a social, economic and environmental context and exploring the interplay between these elements at a local and global scale. This will deepen their understanding of the content and environment and prepare them for the fieldwork exam.</td>
</tr>
<tr>
<td>3</td>
<td>Conceptual Frameworks</td>
<td>In each of these conceptual frameworks, students will visit one of the UK’s best fieldwork locations, contrasting to the previous day. They will visit one of the following:
 - Thriving and vibrant urban location
 - Classic and spectacular river catchment
 - Dynamic and stimulating coastal landscape
 - Diverse and flourishing natural environment
They will choose one approach to enquiry from depending on the year of examination:
 - Place
 - Sphere of Influence
 - Cycles and Flows
 - Mitigating Risk
 - Sustainability
 - Inequality</td>
<td>Geographical Enquiry Process: Sections 1.3, 1.4, 1.5 and 1.6
Students will complete the enquiry process, placing their field data into a social, economic and environmental context and exploring the interplay between these elements at a local and global scale. This will deepen their understanding of the content and environment and prepare them for the fieldwork exam.</td>
</tr>
<tr>
<td>5</td>
<td>Fieldwork Methodology Extension:
Drainage Basins
Using the enquiry process, students will consider the causes and effects of flooding in a local area. OR
Coastal Hazards and their Management
Students will consider how the hard and soft engineering strategies have been used at one coastline to prevent the risk of erosion and flooding.</td>
<td>Depart after Lunch
A final farewell from FSC staff as the students depart.</td>
<td></td>
</tr>
</tbody>
</table>

This course introduces students to the six stages of fieldwork enquiry, listed below. Using real world issues and supported by FSC’s extensive secondary data bank, students will develop and extend their competence in undertaking fieldwork and preparing for the fieldwork questions in the exam:

1.1 What is the geographical enquiry process?
1.2 How is evidence collected?
1.3 How can evidence be processed and presented?
1.4 How can evidence be analysed and how do patterns and trends evidenced by fieldwork relate to wider geographical knowledge and understanding?
1.5 What conclusions may be drawn from fieldwork enquiries?
1.6 What evaluative techniques should be applied to the enquiry process?

Please visit http://www.field-studies-council.org/outdoorclassroom/ for alternative courses.
Learning Opportunities

Students will be introduced to the environment in which they will conduct their fieldwork enquiry. They will prepare for the data collection, by posing questions, designing fieldwork data sheets and considering sampling methods.

Each school will have a choice of a coastal, urban, natural or river environments in which to conduct their methodical fieldwork enquiry. The students will spend this session preparing themselves for the site visit and data collection in the following day. Students will:

• Research the location using digital resources, data banks and printed materials.
• Work through a selection of tasks relating to how to pose appropriate and relevant geographical questions, in a variety of contrasting contexts.
• Start to form questions and develop possible hypotheses using their geographical knowledge.
• Consider the fieldwork possibilities for the location and start to consider the risks and hazards within the area.
• Consider the criteria for designing high quality, relevant and appropriate data collection sheets, both paper based and ICT based.
• Design fieldwork data collection sheets, identifying where the data can be collected.
• Build their knowledge of the range of sampling strategies and techniques and decide on their sampling methods and sample sizes.
• Collect secondary data that is relevant and appropriate to the area of study.

Specification Links

Core Theme 1: Landscapes and Physical Processes

Key Idea 1.1: Distinctive Landscapes of the UK
Key Questions 1.1.2: How are physical landscapes affected by visitor pressure?
Key Questions 1.1.3: How can visitor pressure be managed?

Key Idea 1.2: Landform Process and Change in UK Landscapes
Key Questions 1.2.1: How do processes work together to create landform features at different scales in the UK?
Key Questions 1.2.2: What factors affect the rates of landform change in the UK?

Key Idea 1.3: The Drainage Basin
Key Questions 1.3.1: Why do rivers in the UK flood?
Key Questions 1.3.2: What are the current and future management approaches to the problem of flooding in the UK?

Key Idea 2.1: The Urban-Rural Continuum
Key Questions 2.1.1: How are rural and urban areas of the UK linked?
Key Questions 2.1.2: How are rural areas in the UK changing?

Key Idea 2.3: Process and Change in UK Towns and Cities
Key Questions 2.3.1: How and why is retailing changing in the UK?
Key Questions 2.3.2: What are some of the contemporary challenges facing UK towns and cities?

Mathematical and Statistical Techniques

1 Numerical skills
• 1.2 Design fieldwork data collection sheets and collect data with an understanding of accuracy, sample size and procedures, control groups and reliability.

3 Cartographic skills
• 3.1 Use and understand gradient, contour and spot height on OS maps and other isoline maps.
• 3.3 Use and understand coordinates, scale and distance.
GCSE Geography: Applied Fieldwork Enquiry 4 days
Fieldwork Methodology - Use of Transects

Learning Opportunities

The focus of this day will be the task set by Eduqas for the year of exam entry. It will be one of the following contextualized in either an urban, river, natural or coastal environment depending on your preference.

Students will consider parts of the enquiry process and complete the set Eduqas task. They will:

- Develop their knowledge of the real world complex environment, illustrating the geographical process affecting the landscape and people.
- Use fieldwork equipment to gather qualitative and quantitative data.
- Extending their competence in a range of fieldwork skill, including the use of equipment and methodologies, supporting digital technologies.
- Applying their knowledge to contemporary situations and issues, therefore extending the depth of the geographical understanding.

Students will pose questions about geographical processes and concepts and start to test hypotheses, beginning to use their own fieldwork sheets and obtain accurate and reliable results, with fieldwork equipment. A range of equipment will be used to collect quantitative and qualitative data, widening students experience and understanding of primary field skills.

Choose one environment from:

- Urban: In an urban environment students will undertake three different transects, an enquiry into the quality of life, a retailing investigation and a micro-climate survey.
- River: In a river environment students will undertake three transects across a river meander, braided channel and a straight river section.
- Coasts: In a coastal environment students will undertake one transect along a beach to analyse a slope profile and sediment sorting. A further transect along a sand dune environment will be undertaken to analyse patterns of vegetation.
- Human Environment: In a natural environment students will undertake a transect to analyse patterns of vegetation in a woodland. They will also analyse micro-climate up a slope via another transect.

Specification Links

Urban Option

2.2.2 What are some of the contemporary challenges facing UK towns and cities?
2.2.3 How and why is retailing changing in the UK?
5.2.2 What factors create variations in weather and climate at different scales within the UK?

River Option

1.2.1 How do processes work together to create landform features at different scales in river and coastal landscapes in the UK?
1.2.2 What factors affect the rates of landform change in river and coastal landscapes in the UK?

Coasts Option

1.2.1 How do processes work together to create landform features at different scales in river and coastal landscapes in the UK?
1.2.2 What factors affect the rates of landform change in river and coastal landscapes in the UK?

Human Environment Option

5.2.2 What factors create variations in weather and climate at different scales within the UK?
5.3.2 What are the key processes of ecosystems at different scales?

Mathematical and Statistical Techniques

1 Numerical skills
 - 1.1 Demonstrate an understanding of number, area and scale and the quantitative relationships between units.
 - 1.2 Design fieldwork data collection sheets and collect data with an understanding of accuracy, sample size and procedures, control groups and reliability.

3 Cartographic skills
 - 3.1 Use and understand gradient, contour and spot height on OS maps and other isoline maps.
 - 3.3 Use and understand coordinates, scale and distance.
 - 3.4 Describe and interpret geo-spatial data presented in a GIS framework.
Learning Opportunities

The focus of this day will be the task set by Eduqas for the year of exam entry. It will be one of the following contextualized in either an urban, river, natural or coastal environment depending on your preference.

Students will consider parts of the enquiry process and complete the set Eduqas task. They will:

- Develop their knowledge of the real world complex environment, illustrating the geographical process affecting the landscape and people.
- Use fieldwork equipment to gather qualitative and quantitative data.
- Extending their competence in a range of fieldwork skill, including the use of equipment and methodologies, supporting digital technologies.
- Applying their knowledge to contemporary situations and issues, therefore extending the depth of the geographical understanding.

Students will pose questions about geographical processes and concepts and start to test hypotheses, beginning to use their own fieldwork sheets and obtain accurate and reliable results, with fieldwork equipment. A range of equipment will be used to collect quantitative and qualitative data, widening students experience and understanding of primary field skills.

Choose one environment from:

- Urban: An urban environment to compare current retailing patterns to historic data from a previous year.
- River: A river environment to compare changing landforms, using current evidence compared to historical maps and photos.
- Coasts: A coastal environment to compare changing landforms, using current evidence compared to historical maps and photos.
- Human Environment: A rural-urban environment to compare changing land use over time.

Specification Links

Urban Option
2.2.3 How and why is retailing changing in the UK?

River Option
1.2.1 How do processes work together to create landform features at different scales in river and coastal landscapes in the UK?
1.2.2 What factors affect the rates of landform change in river and coastal landscapes in the UK?

Coasts Option
1.2.1 How do processes work together to create landform features at different scales in river and coastal landscapes in the UK?
1.2.2 What factors affect the rates of landform change in river and coastal landscapes in the UK?

Human Environment Option
2.1.1 How are urban and rural areas of the UK linked?
2.1.2 How are rural areas in the UK changing?

Mathematical and Statistical Techniques

1 Numerical skills
 1.1 Demonstrate an understanding of number, area and scale and the quantitative relationships between units.
 1.2 Design fieldwork data collection sheets and collect data with an understanding of accuracy, sample size and procedures, control groups and reliability.

3 Cartographic skills
 3.1 Use and understand gradient, contour and spot height on OS maps and other isoline maps.
 3.3 Use and understand coordinates, scale and distance.
 3.4 Describe and interpret geo-spatial data presented in a GIS framework.
Learning Opportunities

The focus of this day will be the task set by Eduqas for the year of exam entry. It will be one of the following contextualized in either an urban, river, natural or coastal environment depending on your preference.

Students will consider parts of the enquiry process and complete the set Eduqas task. They will:

- Develop their knowledge of the real world complex environment, illustrating the geographical process affecting the landscape and people.
- Use fieldwork equipment to gather qualitative and quantitative data.
- Extending their competence in a range of fieldwork skill, including the use of equipment and methodologies, supporting digital technologies.
- Applying their knowledge to contemporary situations and issues, therefore extending the depth of the geographical understanding.

Students will pose questions about geographical processes and concepts and start to test hypotheses, beginning to use their own fieldwork sheets and obtain accurate and reliable results, with fieldwork equipment. A range of equipment will be used to collect quantitative and qualitative data, widening students experience and understanding of primary field skills.

Choose one environment from:

- Urban: An urban environment to explore the perception of the people towards flood risk, climate change or other locally relevant issue.
- River: A river environment to assess the value of the river landscape to the people who live there.
- Coast: A coastal environment to assess the value of the coastal landscape to the people who live there.
- Human Environment: A rural environment to explore the perception of the people towards flood risk, climate change or other locally relevant issue.
- Natural Environment: A honeypot site to compare visitor and local perceptions of the site and its benefits and disadvantages.

Specification Links

Urban Option

1.1.1 What makes landscapes distinctive in the UK?
1.3.3 What are the current and future management approaches to the problem of flooding in the UK
8.1.2 How may climate change affect people and how can technology be used and people's lifestyles changed to reduce these impacts?

River Option

1.1.1 What makes landscapes distinctive in the UK?
1.3.3 What are the current and future management approaches to the problem of flooding in the UK?

Coasts Option

4.1.1 Why are some coastal communities vulnerable to erosion and flooding?
4.2.1 How are coastlines managed?

Natural Environment Option

1.1.3 How can landscapes in the UK be managed?
5.1.2 What are the causes of climate change?
5.2.1 What are the causes and consequences of, and responses to, two weather hazards?
5.4.1 How do people use ecosystems and environments?
8.1.2 How may climate change affect people and how can technology be used and people’s lifestyles changed to reduce these impacts?

Mathematical and Statistical Techniques

1 Numerical skills
- 1.1 Demonstrate an understanding of number, area and scale and the quantitave relationships between units.
- 1.2 Design fieldwork data collection sheets and collect data with an understanding of accuracy, sample size and procedures, control groups and reliability.

3 Cartographic skills
- 3.1 Use and understand gradient, contour and spot height on OS maps and other isoline maps.
- 3.3 Use and understand coordinates, scale and distance.
- 3.4 Describe and interpret geo-spatial data presented in a GIS framework.
Learning Opportunities

The focus of this day will be the task set by Eduqas for the year of exam entry. It will be one of the following contextualized in either an urban, river, natural or coastal environment depending on your preference.

Students will consider parts of the enquiry process and complete the set Eduqas task. They will:

- Develop their knowledge of the real world complex environment, illustrating the geographical process affecting the landscape and people.
- Use fieldwork equipment to gather qualitative and quantitative data.
- Extending their competence in a range of fieldwork skill, including the use of equipment and methodologies, supporting digital technologies.
- Applying their knowledge to contemporary situations and issues, therefore extending the depth of the geographical understanding.

Students will pose questions about geographical processes and concepts and start to test hypotheses, beginning to use their own fieldwork sheets and obtain accurate and reliable results, with fieldwork equipment. A range of equipment will be used to collect quantitative and qualitative data, widening students experience and understanding of primary field skills.

Choose one environment from:

- Urban: An urban environment to analyse traffic and pedestrian flows, which could include commuter movements.
- River: A river environment to survey downstream changes in a river.
- Coast: A coastal environment to analyse sediment size and shape as a result of longshore drift along a coastline.
- Natural Environment: A natural environment to analyse infiltration rates in various soils and interception rates in various vegetation types.

Specification Links

Urban Option

2.1.1 How are urban and rural areas of the UK linked?

River Option

1.2.1 How do processes work together to create landform features at different scales in river and coastal landscapes in the UK?

Coasts Option

1.2.1 How do processes work together to create landform features at different scales in river and coastal landscapes in the UK?

Natural Environment Option

1.3.1 What physical processes affect stores and flows in UK drainage basins?

Mathematical and Statistical Techniques

1 Numerical skills

- 1.1 Demonstrate an understanding of number, area and scale and the quantitative relationships between units.
- 1.2 Design fieldwork data collection sheets and collect data with an understanding of accuracy, sample size and procedures, control groups and reliability.

3 Cartographic skills

- 3.1 Use and understand gradient, contour and spot height on OS maps and other isoline maps.
- 3.3 Use and understand coordinates, scale and distance.
- 3.4 Describe and interpret geo-spatial data presented in a GIS framework.
GCSE Geography: Applied Fieldwork Enquiry 4 days
Geographical Enquiry Process: Sections 1.3, 1.4, 1.5 and 1.6

Learning Opportunities

This follow-up session will be specific to the enquiry that the students have completed during the day. They will focus on:

- Selecting appropriate ways of processing and presenting their fieldwork data, often involving the use of GIS.
- Identifying, analysing and interpreting trends and patterns within their fieldwork data and relating these to wider geographical concepts and processes.
- Synthesising findings to reach evidenced conclusions that relate directly to the initial aim of the enquiry.
- Identifying the limitations of geographical data and evidence and reflect critically on the strengths and limitations of both the primary and secondary data from their study.
- Appreciating the stakeholders may have vested interests and how this might affect the reliability and validity of the data.

A range of presentation methods will be introduced and approaches to identify the most appropriate will be discussed. Key terminology will be used to support the discussion framework to ensure students can describe, analyse and explain their data, as well as identify anomalies in the data sets. During each follow-up session evidenced conclusions will be modelled, relating these to the original aims of the enquiries, and detailed evaluations will include limitations of data collection and reliability of conclusions. Students will be encouraged to take ownership of their learning by reflecting on what and how they have learnt throughout their investigation.

Specification Links

Mathematical and Statistical Techniques

1 Numerical skills
 - 1.1 Demonstrate an understanding of number, area and scale and the quantitative relationships between units.
 - 1.3 Understand and correctly use proportion and ratio, magnitude and frequency.
 - 1.4 Draw informed conclusions from numerical data.

2 Statistical skills
 - 2.1 Use appropriate measures of central tendency, spread and cumulative frequency.
 - 2.2 Calculate percentage increase or decrease and understand the use of percentiles.
 - 2.3 Describe relationships in bivariate data.
 - 2.4 Identify weaknesses in selective statistical presentation of data.

3 Cartographic skills
 - 3.2 Interpret cross sections and transects.
 - 3.4 Describe and interpret geo-spatial data presented in a GIS framework.

4 Graphical skills
 - 4.1 Select and construct appropriate graphs and charts to present data, using appropriate scales.
 - 4.2 Interpret and extract information from different types of graphs. Interpret different graphs to identify patterns and trends.
 - 4.3 Interpret population pyramids, choropleth maps and flow-line maps.
Learning Opportunities

The focus of this day will be the task set by Eduqas for the year of exam entry. It will be one of the following contextualized in either an urban, river, natural or coastal environment depending on your preference.

Students will consider parts of the enquiry process and complete the set Eduqas task. They will:

- Develop their knowledge of the real world complex environment, illustrating the geographical process affecting the landscape and people.
- Use fieldwork equipment to gather qualitative and quantitative data.
- Extending their competence in a range of fieldwork skill, including the use of equipment and methodologies, supporting digital technologies.
- Applying their knowledge to contemporary situations and issues, therefore extending the depth of the geographical understanding.

Students will pose questions about geographical processes and concepts and start to test hypotheses, beginning to use their own fieldwork sheets and obtain accurate and reliable results, with fieldwork equipment. A range of equipment will be used to collect quantitative and qualitative data, widening students experience and understanding of primary field skills.

Students will compare and contrast the features of two distinctive locations and identify the uniqueness of the place. Choose one of the following locations:

- Urban: Two urban environments.
- River: Characteristics of river features in two locations.
- Coastal: Characteristics of coastal features in two locations.
- Ecosystems: Characteristics of an ecosystem in two locations.
- Rural Villages: Two rural villages.

Specification Links

Urban

2.2.2 What are some of the contemporary challenges facing UK towns and cities?

River

1.2.1 How do processes work together to create landform features at different scales in river and coastal landscapes in the UK?

Coastal

1.2.1 How do processes work together to create landform features at different scales in river and coastal landscapes in the UK?

Ecosystems

5.3.2 What are the key processes of ecosystems at different scales?

Rural Village

2.1.2 How are rural areas in the UK changing?

Mathematical and Statistical Techniques

1 Numerical skills

- 1.1 Demonstrate an understanding of number, area and scale and the quantitative relationships between units.
- 1.2 Design fieldwork data collection sheets and collect data with an understanding of accuracy, sample size and procedures, control groups and reliability.

3 Cartographic skills

- 3.1 Use and understand gradient, contour and spot height on OS maps and other isoline maps.
- 3.3 Use and understand coordinates, scale and distance.
- 3.4 Describe and interpret geo-spatial data presented in a GIS framework.
Learning Opportunities

The focus of this day will be the task set by Eduqas for the year of exam entry. It will be one of the following contextualized in either an urban, river, natural or coastal environment depending on your preference.

Students will consider parts of the enquiry process and complete the set Eduqas task. They will:

- Develop their knowledge of the real world complex environment, illustrating the geographical process affecting the landscape and people.
- Use fieldwork equipment to gather qualitative and quantitative data.
- Extending their competence in a range of fieldwork skill, including the use of equipment and methodologies, supporting digital technologies.
- Applying their knowledge to contemporary situations and issues, therefore extending the depth of the geographical understanding.

Students will pose questions about geographical processes and concepts and start to test hypotheses, beginning to use their own fieldwork sheets and obtain accurate and reliable results, with fieldwork equipment. A range of equipment will be used to collect quantitative and qualitative data, widening students experience and understanding of primary field skills.

Students identify the extent of the sphere of influence and/or catchment area and analyse the positive or negative impacts of this on the place. Choose one of the following:

- Sphere of influence of larger urban areas and their impacts on their hinterland.
- Sphere of influence of a honeypot site and its impact(s). For example, analysing visitor pressure along a footpath.
- Sphere of influence of a distinctive landscape feature and its impact(s).
- River catchment and its impact on potential flood risk.

Specification Links

Large Urban Areas

2.1.1 How are urban and rural areas of the UK linked?

Honeypot Site

1.1.2 How are physical landscapes in the UK affected by human activity?

Distinctive Landscape Feature

1.1.1 What makes landscapes distinctive in the UK

River Catchment

1.3.2 Why do rivers in the UK flood?

Mathematical and Statistical Techniques

1 Numerical skills

- 1.1 Demonstrate an understanding of number, area and scale and the quantitative relationships between units.
- 1.2 Design fieldwork data collection sheets and collect data with an understanding of accuracy, sample size and procedures, control groups and reliability.

3 Cartographic skills

- 3.1 Use and understand gradient, contour and spot height on OS maps and other isoline maps.
- 3.3 Use and understand coordinates, scale and distance.
- 3.4 Describe and interpret geo-spatial data presented in a GIS framework.
Learning Opportunities

The focus of this day will be the task set by Eduqas for the year of exam entry. It will be one of the following contextualized in either an urban, river, natural or coastal environment depending on your preference.

Students will consider parts of the enquiry process and complete the set Eduqas task. They will:

• Develop their knowledge of the real world complex environment, illustrating the geographical process affecting the landscape and people.
• Use fieldwork equipment to gather qualitative and quantitative data.
• Extending their competence in a range of fieldwork skill, including the use of equipment and methodologies, supporting digital technologies.
• Applying their knowledge to contemporary situations and issues, therefore extending the depth of the geographical understanding.

Students will pose questions about geographical processes and concepts and start to test hypotheses, beginning to use their own fieldwork sheets and obtain accurate and reliable results, with fieldwork equipment. A range of equipment will be used to collect quantitative and qualitative data, widening students experience and understanding of primary field skills.

Students will identify the patterns of movement and the reasons for effects of these movements. Choose one of the following:

• Migration survey which focuses on push-pull factors and their impacts in either an urban or rural locations.
• Study of commuter flows between an urban and neighbouring rural location.
• Comparing river flows in contrasting river stages.
• Identifying seasonal change in a local ecosystem, using secondary and primary field data.

Specification Links

Migration Survey

2.2.1 What are the causes and consequences of population change in the UK?
2.1.2 How are rural areas in the UK changing?

Commuter Flows

2.1.1 How are urban and rural areas of the UK linked?

Rivers

1.2.1 How do processes work together to create landform features at different scales in river and coastal landscapes in the UK?
1.3.1 What physical processes affect stores and flows in UK drainage basins?

Ecosystems

5.3.2 What are the key processes of ecosystems at different scales?
5.4.2 How do human activities modify processes and interactions within ecosystems?

Mathematical and Statistical Techniques

1 Numerical skills

• 1.1 Demonstrate an understanding of number, area and scale and the quantitative relationships between units.
• 1.2 Design fieldwork data collection sheets and collect data with an understanding of accuracy, sample size and procedures, control groups and reliability.

3 Cartographic skills

• 3.1 Use and understand gradient, contour and spot height on OS maps and other isoline maps.
• 3.3 Use and understand coordinates, scale and distance.
• 3.4 Describe and interpret geo-spatial data presented in a GIS framework.
Learning Opportunities

The focus of this day will be the task set by Eduqas for the year of exam entry. It will be one of the following contextualized in either an urban, river, natural or coastal environment depending on your preference.

Students will consider parts of the enquiry process and complete the set Eduqas task. They will:

- Develop their knowledge of the real world complex environment, illustrating the geographical process affecting the landscape and people.
- Use fieldwork equipment to gather qualitative and quantitative data.
- Extending their competence in a range of fieldwork skill, including the use of equipment and methodologies, supporting digital technologies.
- Applying their knowledge to contemporary situations and issues, therefore extending the depth of the geographical understanding.

Students will pose questions about geographical processes and concepts and start to test hypotheses, beginning to use their own fieldwork sheets and obtain accurate and reliable results, with fieldwork equipment. A range of equipment will be used to collect quantitative and qualitative data, widening students experience and understanding of primary field skills.

Students will identify the nature of risk and human responses to it in one location. Choose one of the following:

- Coastal erosion/flood risk and management strategies.
- Flood risk and river management strategies.
- Perceptions of climate change and possible local responses.
- Environmental risk and its management. For example, location of a new wind farm or an investigation of air quality in an urban area.

Specification Links

Coasts

4.1.1 Why are some coastal communities vulnerable to erosion and flooding?
4.2.1 How are coastlines managed?
4.2.2 What is the most sustainable way to manage coastlines in the face of rising sea levels?

River Flooding

1.3.1 What physical processes affect stores and flows in UK drainage basins?
1.3.2 Why do rivers in the UK flood?
1.3.3 What are the current and future management approaches to the problem of flooding in the UK?

Climate Change

5.1.1 What is the evidence for climate change?
5.1.2 What are the causes of climate change?

Environmental Risk

5.2.1 What are the causes and consequences of, and responses to, two weather hazards?
5.4.1 How do people use ecosystems and environments?

Mathematical and Statistical Techniques

1 Numerical skills
- 1.1 Demonstrate an understanding of number, area and scale and the quantitative relationships between units.
- 1.2 Design fieldwork data collection sheets and collect data with an understanding of accuracy, sample size and procedures, control groups and reliability.

3 Cartographic skills
- 3.1 Use and understand gradient, contour and spot height on OS maps and other isoline maps.
- 3.3 Use and understand coordinates, scale and distance.
- 3.4 Describe and interpret geo-spatial data presented in a GIS framework.
Learning Opportunities

The focus of this day will be the task set by Eduqas for the year of exam entry. It will be one of the following contextualized in either an urban, river, natural or coastal environment depending on your preference.

Students will consider parts of the enquiry process and complete the set Eduqas task. They will:

- Develop their knowledge of the real world complex environment, illustrating the geographical process affecting the landscape and people.
- Use fieldwork equipment to gather qualitative and quantitative data.
- Extending their competence in a range of fieldwork skill, including the use of equipment and methodologies, supporting digital technologies.
- Applying their knowledge to contemporary situations and issues, therefore extending the depth of the geographical understanding.

Students will pose questions about geographical processes and concepts and start to test hypotheses, beginning to use their own fieldwork sheets and obtain accurate and reliable results, with fieldwork equipment. A range of equipment will be used to collect quantitative and qualitative data, widening students experience and understanding of primary field skills.

Students will assess the extent to which a community can be made more sustainable. Choose one from the following:

- Impacts of a pedestrian scheme or park and ride scheme and the effectiveness of an existing or planned community (urban or rural) to meet requirements of Egan’s wheel.
- Evaluating sustainable coastal or flood management strategies.
- Evaluating possible sustainable uses of a brownfield site.

Specification Links

Egan’s Wheel

2.2.2 What are some of the contemporary challenges facing UK towns and cities?

Coastal or Flood Management

1.3.3 What are the current and future management approaches to the problem of flooding in the UK?

4.2.2 What is the most sustainable way to manage coastlines in the face of rising sea levels?

Brownfield site

2.2.2 What are some of the contemporary challenges facing UK towns and cities?

Mathematical and Statistical Techniques

1 Numerical skills
- 1.1 Demonstrate an understanding of number, area and scale and the quantitative relationships between units.
- 1.2 Design fieldwork data collection sheets and collect data with an understanding of accuracy, sample size and procedures, control groups and reliability.

3 Cartographic skills
- 3.1 Use and understand gradient, contour and spot height on OS maps and other isoline maps.
- 3.3 Use and understand coordinates, scale and distance.
- 3.4 Describe and interpret geo-spatial data presented in a GIS framework.
Learning Opportunities

The focus of this day will be the task set by Eduqas for the year of exam entry. It will be one of the following contextualized in either an urban, river, natural or coastal environment depending on your preference.

Students will consider parts of the enquiry process and complete the set Eduqas task. They will:

• Develop their knowledge of the real world complex environment, illustrating the geographical process affecting the landscape and people.
• Use fieldwork equipment to gather qualitative and quantitative data.
• Extending their competence in a range of fieldwork skill, including the use of equipment and methodologies, supporting digital technologies.
• Applying their knowledge to contemporary situations and issues, therefore extending the depth of the geographical understanding.

Students will pose questions about geographical processes and concepts and start to test hypotheses, beginning to use their own fieldwork sheets and obtain accurate and reliable results, with fieldwork equipment. A range of equipment will be used to collect quantitative and qualitative data, widening students experience and understanding of primary field skills.

Students will analyse patterns of inequality, focusing on issues such as deprivation or access to services. Choose one from the following:

• How positive and negative externalities impact on standard of living in urban or rural environments.
• Comparing access to services in rural and urban communities within the hinterland of one large urban area.
• Assessing quality of the urban environment and its impact on house prices across an urban transect evaluating the success of an urban regeneration scheme in reducing deprivation.

Specification Links

Standard of living

2.1.1 How are urban and rural areas of the UK linked?

Services

2.1.2 How are rural areas in the UK changing?

House Prices

2.3.2 What are the consequences of urbanisation in two global cities?

Mathematical and Statistical Techniques

1 Numerical skills

• 1.1 Demonstrate an understanding of number, area and scale and the quantitative relationships between units.
• 1.2 Design fieldwork data collection sheets and collect data with an understanding of accuracy, sample size and procedures, control groups and reliability.

3 Cartographic skills

• 3.1 Use and understand gradient, contour and spot height on OS maps and other isoline maps.
• 3.3 Use and understand coordinates, scale and distance.
• 3.4 Describe and interpret geo-spatial data presented in a GIS framework.
Learning Opportunities

Using the enquiry process, students will consider the causes and effects of flooding in a local area.

Using information from a range of agencies and data students will collect themselves, the reasons why one location floods will be investigated. Physical factors such as climate, vegetation and geology will be studied together with human factors such as changing land use. Strategies for river channel and drainage basin management will also be considered.

Specification Links

Core Theme 1: Landscapes and Physical Processes

Key Idea 1.3: Drainage basins of the UK

Key Questions 1.3.2: Why do rivers in the UK flood?
Key Questions 1.3.3: What are the current and future management approaches to the problem of flooding in the UK?

Mathematical and Statistical Techniques

1 Numerical skills
 • 1.2 Design fieldwork data collection sheets and collect data with an understanding of accuracy, sample size and procedures, control groups and reliability.
 • 1.4 Draw informed conclusions from numerical data.

2 Statistical skills
 • 2.1 Use appropriate measures of central tendency, spread and cumulative frequency.
 • 2.2 Calculate percentage increase or decrease and understand the use of percentiles.

3 Cartographic skills
 • 3.1 Use and understand gradient, contour and spot height on OS maps and other isoline maps.
 • 3.2 Interpret cross sections and transects.
 • 3.4 Describe and interpret geo-spatial data presented in a GIS framework.

4 Graphical skills
 • 4.1 Select and construct appropriate graphs and charts to present data, using appropriate scales.
GCSE Geography: Applied Fieldwork Enquiry 4 days
Fieldwork Methodology Extension - Coastal Hazards and their Management

Learning Opportunities
Students will consider how the hard and soft engineering strategies have been used at one coastline to prevent the risk of erosion and flooding. Students will use shoreline management plans and their own data to consider two strategies ‘hold the existing line of defence’ and ‘managed retreat or realignment’. They will consider the concept of cost-benefit and why some communities are at a greater risk than others.

Specification Links

Core Theme 4: Coastal Hazards and their Management

Key Idea 4.1: Vulnerable Coastlines
Key Questions 4.1.1: Why are some coastal communities vulnerable to erosion and flooding?

Key Idea 4.2: Managing Coastal Hazards
Key Question 4.2.1: How are coastlines managed?

Mathematical and Statistical Techniques

1 Numerical skills
• 1.2 Design fieldwork data collection sheets and collect data with an understanding of accuracy, sample size and procedures, control groups and reliability.
• 1.4 Draw informed conclusions from numerical data.

2 Statistical skills
• 2.1 Use appropriate measures of central tendency, spread and cumulative frequency.
• 2.2 Calculate percentage increase or decrease and understand the use of percentiles.

3 Cartographic skills
• 3.1 Use and understand gradient, contour and spot height on OS maps and other isoline maps.
• 3.3 Use and understand coordinates, scale and distance.
• 3.4 Describe and interpret geo-spatial data presented in a GIS framework.

4 Graphical skills
• 4.1 Select and construct appropriate graphs and charts to present data, using appropriate scales.
• 4.2 Interpret and extract information from different types of graphs. Interpret different graphs to identify patterns and trends.
<table>
<thead>
<tr>
<th>Fieldwork Methodologies</th>
<th>Place</th>
<th>Sphere of Influence</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Urban Location</td>
<td>River Catchment</td>
</tr>
<tr>
<td></td>
<td>Urban Location</td>
<td>River Catchment</td>
</tr>
<tr>
<td>BL</td>
<td>Blencathra</td>
<td>✓</td>
</tr>
<tr>
<td>CH</td>
<td>Castle Head</td>
<td>✓</td>
</tr>
<tr>
<td>DF</td>
<td>Dale Fort</td>
<td>✓</td>
</tr>
<tr>
<td>FM</td>
<td>Flatford Mill</td>
<td>✓</td>
</tr>
<tr>
<td>JH</td>
<td>Juniper Hall</td>
<td>✓</td>
</tr>
<tr>
<td>MA</td>
<td>Margam</td>
<td>✓</td>
</tr>
<tr>
<td>MT</td>
<td>Malham Tarn</td>
<td>✓</td>
</tr>
<tr>
<td>NC</td>
<td>Nettlecombe</td>
<td>✓</td>
</tr>
<tr>
<td>OR</td>
<td>Orielton</td>
<td>✓</td>
</tr>
<tr>
<td>PM</td>
<td>Preston Montford</td>
<td>✓</td>
</tr>
<tr>
<td>RC</td>
<td>Rhyd-y-creuau</td>
<td>✓</td>
</tr>
<tr>
<td>SL</td>
<td>Slapton</td>
<td>✓</td>
</tr>
</tbody>
</table>

To book this course, simply:
Choose the time of the year you would like to attend
1. Pick the Centre(s) of interest
2. Check availability online, contact head office to check availability across multiple Centres or contact the Centre(s) of your choice directly

To book this course the minimum size of your group must be 12 students and one member of staff.

Head Office contact details:
Tel: 01743 852100 Email: enquiries@field-studies-council.org

Please visit http://www.field-studies-council.org/outdoorclassroom/
For alternative courses
GCSE Geography: Applied Fieldwork Enquiry 4 days

FSC Centres

<table>
<thead>
<tr>
<th>Cycle and Flows</th>
<th>Mitigating Risk</th>
<th>Sustainability</th>
<th>Inequality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Migration Survey</td>
<td>Study of Commuter Flows</td>
<td>River Flow</td>
<td>Local Ecosystem</td>
</tr>
<tr>
<td>BL</td>
<td>Blencathra</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>CH</td>
<td>Castle Head</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>DF</td>
<td>Dale Fort</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>FM</td>
<td>Flatford Mill</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>JH</td>
<td>Juniper Hall</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>MA</td>
<td>Margam</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>MT</td>
<td>Malham Tarn</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>NC</td>
<td>Nettlecombe</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>OR</td>
<td>Orielton</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>PM</td>
<td>Preston Montford</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>RC</td>
<td>Rhyd-y-creuau</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>SL</td>
<td>Slapton</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

To book this course, simply:

Choose the time of the year you would like to attend
1. Pick the Centre(s) of interest
2. Check availability online, contact head office to check availability across multiple Centres or contact the Centre(s) of your choice directly

To book this course the minimum size of your group must be 12 students and one member of staff.

Head Office contact details:

Tel: 01743 852100 Email: enquiries@field-studies-council.org

Please visit http://www.field-studies-council.org/outdoorclassroom/

For alternative courses